To further support fo3nix's theory, it's known that only stars, such as our sun, that have high iron content are able to accrete planetary systems from the primoidal gas disk from which the star formed in the first place.
"Astronomers have noted that only 5 percent of stars have planets, but that's not a very precise assessment," said Debra Fischer, a research astronomer at the University of California, Berkeley. "We now know that stars which are abundant in heavy metals are five times more likely to harbor orbiting planets than are stars deficient in metals. If you look at the metal-rich stars, 20 percent have planets. That's stunning."
"The metals are the seeds from which planets form," added colleague Jeff Valenti, an assistant astronomer at the Space Telescope Science Institute (STScI) in Baltimore, Md.
The problem with the Jupiter scenario is, however, due to it's low density. Although it's the most massive planet it is less dense than Earth. In fact, due to its composition, it's thought to be a failed star... that is, it didn't reach the critical density needed to trigger fusion and make our Sun system binary in nature (thankfully advantageous to us, no?)...