I can't do the maths but I can explain why your figures are too high,
The pilot has an intial force of mass x velocity-squared (say 80kg x 10m/s x 10m/s = 8000N)
The deceleration that occurs as he enters the water is due to the displacement of water (i.e. accelerating it out of the way). Obviously, for the pilot to survive, the water has to get out of the way pretty quickly (actually it doesn't, which is why it's like hitting concrete!).
In the time it takes him to enter the water (2m @ 10m/s = 0.2s) an equivalent _volume_ of water has to be shifted (say 100Kg since water is denser than the human body).
Ignoring many things, and assuming the water is shifted 50cms on average, then the energy lost is 100Kg x 0.5m/0.2s x 0.5m/0.2s = 100Kg x 2.5m/s x 2.5m/s = 625N.
So now the pilot has a residual force of 8000-625 Newtons = 7375N and hence a velocity of 9.6m/s.
Each subsequent 2m has a similar calculation with the energy lost decreasing at each step. If it were 625N at each step, there would be about 13 steps and a total depth of 26m.
Only when you get toward the end of his final journey does he reach a similar velocity to a diver which is why the earlier comparisons don't work.
And the 625N force applied to the pilot is enough to make his buttock clenching pretty pointless :(
People survive by falling from great heights by dropping into snow (air filled, not compact), or flexible tree branches - none of which have that initial massive deccelaration.