String Theory (Retirers: Eric R. Weinstein, Frank Tipler, Marcelo Gleiser, Peter Woit, Paul Steinhardt, Lawrence M. Krauss; Keepers: Andrei Linde, Gordon Kane, Sean Carroll.)
I wondered if this was going to come up. Here's my take on it: String Theory is the closest thing to physics that a pure mathematician can do. Since we have no problem with people doing pure mathematics, for its own sake, we should have no problem with people studying and trying to understand String Theory. It's likely that there will be a very long wait before experiments can truly put the theory to the test, but on the other hand people have studied all sorts of weird and wonderful things that had apparently no role in nature until it was found or invented years later. One example would be the maths of General Relativity, laid down some 50-odd years before Einstein put it to use in Physics. Perhaps the time scale for String Theory to become true physics will be measured in centuries, but if its time does come, then those who mocked it now will end up being criticised in the future for lacking imagination, or something along those lines.
In itself there is a useful lesson here, I think, about how Science works. Ultimately, you can only know what the right idea is
now, based on what theory and experiment tell you now. Is it wrong to back the best fit to the available data, even if that best fit ends up being shown to be wrong because it fails a future experimental test? I'm not sure that it is, or at least, people should allow that sticking to the line, "Based on the available evidence, Theory A is the best description of problem X rather than Theory B" is a sensible and reasonable position, provided it's qualified.
Anyway, String Theory looks like it risks being an idea that was born far too soon, well before its time, and is unlikely to be part of the experimental physicists' world for many years or even decades to come. But I don't think that it's worth retiring, because while the theory has little physical relevance, it's proven to be extraordinarily useful in a purely mathematical sense (most notably in the so-called AdS/CFT correspondence: see
http://en.wikipedia.org/wiki/AdS/CFT_correspondence for a readable-ish introduction) that turns out to mean that String Theory can be used to do calculations in real physical situations (including QCD, that is a confirmed theory of matter, and in the studies of systems of matter (see
http://en.wikipedia.org/wiki/Condensed_matter_physics)).
So no, String Theory is absolutely not ready for retirement -- although, perhaps, it should be set aside as the fundamental theory of nature for the time being, and efforts used instead to see how it can be used in other branches of physics.