Interesting -- I guess this is the full analysis of what I was referring to when I mentioned possibly having to make a "humiliating" backtrack. What I did was note that if you start by drawing a probability tree for two-child families, and then add to the tree an event that amounts to being introduced to one child from the family, then you have the following events:
Two boys, introduced to eldest (boy)
Two boys, introduced to youngest (boy)
Two girls, introduced to eldest (girl)
Two girls, introduced to youngest (girl)
Boy and girl, introduced to eldest (boy)
Boy and girl, introduced to youngest (girl)
Girl and boy, introduced to eldest (girl)
Girl and boy, introduced to youngest (boy)
Which, it is clear, means that there are four scenarios in which you can be introduced to a boy, and two of these correspond to a two-boy family. At this point I stopped, since a) I wasn't sure that I could calculate the probability of these, and b) in my opinion it's actually a different question -- but at any rate the conclusion was, certainly, but once you start fussing about how the information changes then the problem also changes.
I've not checked the calculations in the link myself, yet, but I might try to do it at some point today. On the face of it it's the continuation of the analysis I'd started yesterday.
At the risk of looking horribly arrogant, my own summary might be that the question as originally posed is ambiguous, but those that overlook one answer or the other are in some sense equally mistaken, and it's important to understand where both come from.