I think I understand the problem. The thing is that I don't know the solution, at least not at the moment. If I understand it correctly it's as I have stated below:
Given a random string, of length x, of single-digit numbers, what is the probability that a particular string of length n will occur, for n less than x? The string you are searching for could be two digits long, ie 00 or 49, etc, while the string you generate can be arbitrarily long.
Like I said, the problem is complicated because there is some overlap between the strings you would test: in the string 14342, say, there are four generated pairs of numbers: 14, 43, 34, 42. If you were searching for 22 then the probability it can occur in the second pair is conditional on what the first pair actually was, and in particular if it ended in 2 or not. This makes the problem trickier because each pair you test is dependent on the previous one. It very possibly also means that the problem depends on the string you are interested in, as 22 and 25 have different symmetry properties, and one might end up having a different analysis from the other (although I would need to solve the problem first to confirm this).