The answer is: you can't. You might equally ask: "How many times must I roll a die to be sure that every number, 1 through 6, has been rolled at least once?" Six times? Ten million times? There is always the chance that you never roll, for example, a three. You can, however, answer the question: "How many times must I roll a die in order to be at least [b]95%[/b] sure of rolling every number at least once?" Or any percentage you wish.
So, when playing solitaire, a card combination might be similarly missed, over and over, and never come up during play. So you can never calculate how many games it will take for every card comination to have definitely been played. You [i]can[/i] calculate the probability that every combination will come up after [i]x[/i] games. Or, conversely, you can find how many games you need to play to be [i]y[/i] per cent sure that every card combination will have been played by then!
The exact probabilities will depend on what you define as a "card combination". Is the number of card combinations the number of unique, winning games of solitaire? Or is a card combination the order in which you place all the cards onto the four ace piles? There are many interpretations of your question and I can only imagine the method of calculation to be lengthy and complicated, and the solution to be "a large number of games".