Combinatorics isn't my strong suit, but:
(a) can have (56) or (65) in one of five different positions, and remaining 4 numbers can be any way you like, making for a total of 2*5*4! = 240 cases.
(b) if you put 6 in position 1 then there are no cases; in position 2 then you must have 56.... (4! cases);
in position 3 then 5.6... or .56... works (2*4!); in position 4 then 5 has three slots to choose from (3*4!), etc, for a total of (1+2+3+4+5)*4! = 360. The fact that this is exactly half of the available set of permutations suggests that you could also make an argument from probability/symmetry, ie something like P(5 before 6) = P(6 before 5) = 1/2 (because there is no reason to prefer 5 or 6). But I thought of the exhaustive method first.