Because welded track has very few expansion joints, if no special measures are taken, it could become distorted in hot weather and cause a derailment.
To avoid this, welded rails are very often laid on concrete or steel sleepers, which are so heavy they hold the rails firmly in place, and with plenty of ballast to stop the sleepers moving. After new segments of rail are laid, or defective rails replaced (welded in), the rails are artificially stressed.
The stressing process, involves either heating the rails causing them to expand,[1] or stretching the rails with hydraulic equipment. They are then fastened (clipped) to the sleepers in their expanded form. This process ensures that the rail will not expand much further in subsequent hot weather. In cold weather the rails try to contract, but because they are firmly fastened, cannot do so. In effect, stressed rails are a bit like a piece of stretched elastic firmly fastened down.
Engineers try to heat the rail to a temperature roughly midway between the average extremes of hot and cold (this is known as the 'rail neutral temperature'). If temperatures reach outside normal ranges however, welded rail can buckle in a hotter than usual summer or can actually break in a colder than anticipated winter.
Joints are used in continuously welded rail when necessary; instead of a joint that passes straight across the rail, producing a loud noise and shock when the wheels pass over it, two sections of rail are cut at a steep angle and put together with a gap between them (a breather switch). This gives a much smoother transition yet still provides some expansion room.
I didnt cut and paste this straight from Wikipedia.....honest!