The size of the observable universe is bounded by the distance that light has had time to travel to us.
Not entirely. We can observe the effects of interactions between forces emanating inside and outside our directly visible range.
An observer in the Andromeda Galaxy would have a slightly different observable universe to ours and be able to observe objects slightly outside our own range of observation.
Yes they would see light up to about three million years prior to and hence what we see along the line of our separation.
However the actual size of the universe is much bigger than this.
Estimated to currently extend 46.5 glys in all directions.
An observer at the edge of our observable universe would mostly observe a volume of space completely beyond our range of observation.
Except for the portion common to our intersecting spheres.
My question is....How many of these hypothetical observable universe steps would we have to take before returning to an observable universe which contained our place of origin? How big is the actual universe?
(46.5/13.7) - 1
Or alternatively would we never return, meaning that the universe is infinite.
Unless you make allowance for arrival at each step proportionately faster in relation to the rate of expansion.
Also if the universe is flat not curved due to inflation how does the above work in a non infinite universe?
The light now arriving from the CMBR originated from a point that at the time of first transparency was more than a thousand times closer, (only 36mlys away).
Or please explain to me why the above is not valid
Something to think about