Yes certainly sounds like multiple regression analysis is what you’re talking about.
This involves looking at variations in the independent variables (your six “inputs”) and analysing their influence on the dependent variable (the data you are trying to forecast). It is a fine method except that in trying to forecast the dependent variable you need forecasts of the independent variables and these may be much more difficult to forecast!
Six independent variables would certainly involve a powerful “engine” to perform the analysis and the relationship between the six and the dependent variable (including your certainty about a “causal” relationship, which you must have if the analysis is to be valid) may be difficult to summarise. There are a number of statistical tools to help you validate the relationship, but it would still involve some possibly shaky assumptions.
In my earlier life I was involved in forecasting using MRA and we tried to restrict the independent variables to three at most, together with some “step” changes ( variations not explained by the independent variables) and seasonality. The reason for this was that as the number of IVs increase the reliability of the model decreases - sometimes alarmingly. In addition, as I mentioned, you also have the problem of forecasting all of the IVs if you want to use the model to produce a forecast.